Quantification des mitochondries

ADN mitochondrial

Christophe Rocher
ADN mitochondrial

Caractéristiques générales

Nass et al 1966
ADN mitochondrial

Caractéristiques générales

Double brin

16,6 kb

Code pour 37 gènes

Zeviani et al 2004
ADN mitochondrial

Plusieurs copies d’ADNmt par cellule

de ~ 100 à ~ 10000 copies par cellule

structurées en nucléoïdes

Brown et al 2011
STED (stimulated emission depletion) microscopy found that closely spaced nucleoids can be mistaken for single, larger particles. However, the resolution within the focal plane that is limited to about 250 nm, using a wide-field microscope, may not be sufficient to distinguish these closely spaced nucleoids. Therefore, higher-resolution methods are needed to resolve larger nucleoid structures into small clusters. Kukat et al. used confocal microscopy to resolve nucleoids and found that this method has ranged from about 2.4 to 7.8 per nucleoid, depending on the species. Other reports have also illustrated the great variability in mtDNA content, which may be important differences in mtDNA nucleoid structure in cells from different tissues.

Table 1: Microscopic observations of mtDNA nucleoids

<table>
<thead>
<tr>
<th>Species</th>
<th>Cell</th>
<th>MtDNA/cell</th>
<th>MtDNA/nucleoid</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human</td>
<td>HeLa</td>
<td>8800</td>
<td></td>
<td>[91]</td>
</tr>
<tr>
<td>Human</td>
<td>Fibro</td>
<td>800</td>
<td></td>
<td>[92]</td>
</tr>
<tr>
<td>Human</td>
<td>A2780</td>
<td>500</td>
<td>1.4</td>
<td>[13]</td>
</tr>
<tr>
<td>Human</td>
<td>HeLa</td>
<td>7200</td>
<td></td>
<td>[93]</td>
</tr>
<tr>
<td>Human</td>
<td>KB</td>
<td>7200</td>
<td></td>
<td>[93]</td>
</tr>
<tr>
<td>Human</td>
<td>Fibroblast</td>
<td>2933</td>
<td></td>
<td>[93]</td>
</tr>
<tr>
<td>Human</td>
<td>Fibroblast</td>
<td>5200</td>
<td></td>
<td>[93]</td>
</tr>
<tr>
<td>Human</td>
<td>Male Fibro</td>
<td>1632</td>
<td>2.3</td>
<td>[16]</td>
</tr>
<tr>
<td>Human</td>
<td>Fem Fibro</td>
<td>1961</td>
<td>2.4</td>
<td>[16]</td>
</tr>
<tr>
<td>Human</td>
<td>HeLa</td>
<td>2637</td>
<td>5.7</td>
<td>[16]</td>
</tr>
<tr>
<td>Human</td>
<td>143B</td>
<td>4126</td>
<td>7.5</td>
<td>[16]</td>
</tr>
<tr>
<td>Human</td>
<td>ECV304</td>
<td>3500</td>
<td>7.3</td>
<td>[15]</td>
</tr>
<tr>
<td>Human</td>
<td>Fibroblast</td>
<td>2721</td>
<td>1.4</td>
<td>[18]</td>
</tr>
<tr>
<td>Human</td>
<td>Fibroblast</td>
<td>12,900</td>
<td></td>
<td>[94]</td>
</tr>
<tr>
<td>Mouse</td>
<td>3T3</td>
<td>821</td>
<td>3</td>
<td>[17]</td>
</tr>
<tr>
<td>Mouse</td>
<td>L</td>
<td>1100</td>
<td></td>
<td>[91]</td>
</tr>
<tr>
<td>mouse</td>
<td>LA9</td>
<td>720</td>
<td></td>
<td>[92]</td>
</tr>
</tbody>
</table>
ADN mitochondrial

Compensation de la diminution de la quantité d’ADNmt au niveau de la respiration

Rocher et al 2008

Déplétion de l’ADNmt = 30% ADNmt
Quantification des mitochondries

ADN mitochondrial

Cellules 143B p0

mtRFP

Legros et al 2004
Quantification de l’ADNmt

Deux types de techniques :

- Southern Blot

- PCR quantitative en temps réel
Principes :

- Linéarisation de l’ADNmt par une enzyme de restriction (BamH1 ou PvuII)
- Electrophorèse sur gel d’agarose
- Hybridation avec deux sondes marquées :
 - mitochondriale : molécule d’ADNmt entière
 - nucléaire : ARN ribosomique 18S
- Quantification du signal de chaque bande
- Calcul du rapport : signal mito / signal nucléaire
Quantification de l’ADNmt

Southern Blot

Avantages :

Permet de réaliser des études :

- quantitative (déplétion)

- qualitative (délétion, dégradation)

Inconvénients:

Grande quantité d’ADN

Mise en œuvre lourde et longue

Nécessite de la radioactivité
Quantification de l’ADNmt

PCR quantitative

Principes :

- PCR classique.
 à la fin de l’amplification, le produit va être détecté après une migration sur gel

- PCR en temps réel.
 la quantité de produit va être détectée à chaque cycle, par la quantification de la fluorescence.
 Exp : un intercalant SYBR Green.
Quantification de l’ADNmt

PCR quantitative

Principes :

Gènes mitochondriaux.

COXI
ND4

Gènes nucléaires.

Beta-2-microglobuline
MLH1

Mitomap.org
Quantification de l’ADNmt

PCR quantitative

Principes :

Gènes mitochondriaux.

COXI

ND4

Gènes nucléaires.

Beta-2-microglobuline

MLH1
Quantification de l’ADNmt

PCR quantitative

Principes :

- Réalisations d’une droite d’étalonnage pour chaque gène amplifié
- Détermination du nombre de copie
- Calcul du rapport : mito / nucléaire
Quantification de l’ADNmt

PCR quantitative

Avantages :

Peu de matériel nécessaire
Obtention rapide des résultats
Précision des résultats

Inconvénients:

Informations qualitatives